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Summary

1. Reliably estimating the abundance of rare or elusive animals is notoriously difficult. An

archetypical example is the endangered Florida panther, whose conservation status is intrinsi-

cally linked to population size, but for which reliable abundance information is lacking across

its range. This is due not only to the inherent difficulty of sampling a rare and elusive species

over a large geographic area, but also because of restricted scientific access to private land.

2. Human interactions with wildlife are a regular occurrence, and interactions with

non-scientists constitute an important and underutilized source of information about species

distribution and abundance. For example, motor vehicle collisions with Florida panthers are

recurrent on the vast network of roads within the public and private lands comprising its

range in southern Florida, USA.

3. Capitalizing on a tendency for the public to report collisions with species of concern to

wildlife officials, we describe a novel methodology using public reports along with routine

telemetry monitoring data to produce the first statistically defensible population estimates for

the Florida panther across its entire breeding range. In essence, our approach uses traffic vol-

ume and road density to estimate the probability of motor vehicle collision mortality from

telemetered animals and models counts reported by the public accordingly.

4. Despite low motor vehicle collision mortality probabilities, our methodology achieved

abundance estimates of reasonable precision (29% CV) that was similar to that of previous

panther studies using conventional approaches on much smaller study areas. While recovery

criteria require establishment of three distinct populations of 240 Florida panthers, we found

this single population may never have exceeded 150 individuals from 2000 to 2012.

5. Synthesis and applications. By extracting critical demographic information from underuti-

lized aspects of human–wildlife ecology, our citizen-based approach can cost less than con-

ventional alternatives and could conceivably be used for long-term population monitoring of

other species over broad geographic areas, for example from reports of avian wind farm colli-

sions, beached whales or marine mammal boat strikes. An additional benefit is that it can be

applied to historical data sets of carcass recovery programmes, in our case permitting abun-

dance estimation over a 13-year period.
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Introduction

The estimation of population size for wild animals is

essential to responsible management and testing ecological

or evolutionary theory. Over the past four decades, a
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large variety of statistical methods have been developed

for estimating the abundance of diverse taxa when detec-

tion probabilities are <1, including capture–recapture and

distance sampling methods (e.g. Williams, Nichols & Con-

roy 2002). Invariably, there are cases where these now-

traditional methods are challenged by ethological (e.g.

reclusive or elusive behaviour), demographic (e.g. rare or

low density), geographic (e.g. remote or large study

areas), morphological (e.g. absence of individually identifi-

able traits) and various other aspects of the natural his-

tory of an animal. This is typically the case for large

carnivores and most threatened or endangered species,

but because management objectives are often centred on

viable population sizes, statistically defensible abundance

estimates remain critical to conservation and recovery

programmes.

There has been some success with deriving population

estimates for rare and elusive wildlife populations using

capture–recapture methods, including both traditional and

spatial approaches (Williams, Nichols & Conroy 2002;

Royle et al. 2009). For example, DNA sampling from hair

snares has been effective for brown bears (Kendall et al.

2008), while trail cameras have worked for felids with

uniquely identifiable fur coloration patterns (Royle et al.

2009). However, these methods can be prohibitively

expensive and field intensive for abundance estimation

across a large geographic range. Furthermore, for species

that are difficult to sample using hair snares or species

lacking individually identifiable characteristics (e.g. spots

or stripes), these techniques cannot be reliably used to

estimate population size. One such animal is the endan-

gered Florida panther (Puma concolor coryi).

The Florida panther is the only puma subspecies

remaining in eastern North America and has been listed

as endangered under the US Endangered Species Act for

over 40 years (USFWS 2008). Although a species of con-

cern whose conservation status is intrinsically linked to

population size, reliable information about Florida pan-

ther abundance is lacking across its core reproductive

range in southern Florida, USA. Since 1981, Florida pan-

ther movement and survival have been monitored using

telemetry collars (Onorato et al. 2010). Such long-term

monitoring provides valuable demographic data, but

information about panther abundance has been largely

limited to minimum numbers assumed alive (MNA) from

counts based on physical evidence (McBride et al. 2008).

While the MNA method has provided an index for pan-

ther managers to assess changes in the population, such

indices provide no measures of uncertainty, do not

account for variability in detectability or sampling effort

and are clearly underestimates of the actual population

size due to imperfect detection. Furthermore, researcher

access to panther habitat in Florida is largely restricted to

public lands. Of the 1�2 million ha that comprise the

breeding range, 37% were under private ownership

(Kautz et al. 2006). Thus, for the broader geographic

range of the Florida panther, assessing abundance via

either MNA or capture–recapture will invariably exclude

extensive tracts of private lands that are inaccessible to

panther biologists.

Despite efforts to reduce the impacts of anthropogenic

disturbance associated with roadways intersecting private

and public lands, collisions with motor vehicles remain

the major source of documented mortality for the Flor-

ida panther (Onorato et al. 2010; see Fig. 1). To take

advantage of this source of data that is already collected

as part of routine monitoring, we propose a novel meth-

odology that capitalizes on a tendency for the public to

report motor vehicle collision mortalities (MVMs) to

government agencies for prominent species of concern,

such as the Florida panther, to estimate abundance at a

much larger scale than is possible using conventional

methods. Using a combination of data sources, including

MVMs reported by the public and routine telemetry

monitoring data, we produce the first statistically rigor-

ous estimates for the population size of the Florida pan-

ther across its entire breeding range from 2000 to 2012.

Our case study highlights one of many potential ways by

which hitherto underutilized aspects of human–wildlife
ecology can be exploited to produce defensible inferences

about species distribution and abundance over broad

geographic areas.

Materials and methods

Our approach shares some similarities with so-called mark–re-

sight methods (White & Shenk 2001), where a telemetered (or

marked) subset of the target population is used to estimate detec-

tion probability and adjust counts of unmarked individuals

accordingly. However, the key distinctions to our approach are

Fig. 1. This 4�5-year-old male Florida panther was found along State

Road 29 in Collier County, Florida, USA, on 1 July 2002. Wildlife

officials determined the cause of death to be vehicle collision. Photo

credit: David Shindle.
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as follows: i) detection probability is not the probability of cap-

turing or sighting a live individual, but rather the probability of a

reported MVM; and ii) counts of unmarked individuals are

obtained from MVMs reported to wildlife officials by the public.

In the same spirit as dead recovery models of survival probability

(Brownie et al. 1985) or carcass recovery models of mortality rate

(Bellan et al. 2013), the statistical challenge lies in reliably esti-

mating the probability of a reported MVM.

THE MVM MODEL

We assume the number of marked individuals alive in the study

area is known during the period of interest for abundance esti-

mation. Such ‘known-fate’ data typically rely on capture events

where marked individuals are fitted with transmitters that allow

the location and survival of each individual to be closely moni-

tored (Williams, Nichols & Conroy 2002). We divide the study

period into S seasons, each consisting of Ts (s = 1,. . .,S) distinct

sampling periods. For ease of exposition, we will initially

assume the population is geographically and demographically

closed within each season (with the exception of losses due to

MVMs). If MVM public reporting rates are <100%, this does

not pose a significant problem because the known fates of the

marked individuals enable estimation of the probability of a

reported MVM.

Assuming the marked population is representative of the

unmarked population with respect to MVM and public reporting

probability, we can modify the logit-normal mark–resight model

likelihood (McClintock & Hoeting 2010; McClintock et al. 2013)

to accommodate MVMs. Letting ys,t,i = 0 indicate marked indi-

vidual i was not a MVM during sampling period t of season s,

ys,t,i = 1 indicate marked individual i was a reported MVM, and

ys,t,i = 2 indicate marked individual i was determined by officials

to be a MVM event, but this MVM was not independently

reported to officials by the public, then

Lðy; ujd; r;UÞ ¼
Ys
s¼1

YTs

t¼1

YM
i¼1

Categoricalðys;t;i; ds;t;i; rs;t;iÞ
" #

�Binomial us;t;Us �
Xt�1

k¼1

us;k; �ds;t�rs;t

 !
eqn 1

where

Categoricalðys;t;i; ds;t;i; rs;t;iÞ ¼
1� qs;t;ids;t;i if ys;t;i ¼ 0
qs;t;ids;t;irs;t;i if ys;t;i ¼ 1
qs;t;ids;t;ið1� rs;t;iÞ if ys;t;i ¼ 2;

8<
:

us,t is the number of reported MVMs for unmarked individuals,

qs,t,i = 1 is an indicator for whether individual i was alive and

marked at the beginning of period t (qs,t,i = 0 otherwise), M is

the total number of unique individuals that were alive and

marked at the beginning of at least one sampling period during

the study, ds,t,i is the probability of MVM for marked individual

i, rs,t,i is the probability of the public reporting a MVM for

marked individual i, and Us is the unmarked population size dur-

ing season s. For a randomly selected individual from the popula-

tion, we have �ds;t ¼ Eiðds;t;iÞ and �rs;t ¼ Eiðrs;t;iÞ. When rs,t,i = 1 ∀ i,

abundance at the end of each season is derived as

Ns ¼
P

i qs;Ts ;i �
P

i ys;Ts ;i þUs �
PTs

t¼1 us;t. When rs,t,i < 1 for any

i, the model instead provides a derived estimate of abundance

at the beginning of the season: Ns = Ms + Us, where

Ms ¼
P

i Ið
PTs

t¼1 qs;t;i [ 0Þ is the number of animals known to be

alive and marked at the beginning of season s, and I() is the

indicator function.

Clearly, accurate estimation of MVMs and reporting probabili-

ties from the marked population is critical to reliable estimation of

abundance. This can be facilitated through the identification and

collection of appropriate explanatory covariates for the MVM

reporting process, such as temporal, environmental, behavioural or

social factors. The logit link can be used to model ds,t,i or rs,t,i as a
function of covariates, for example logitðds;t;iÞ ¼ x0s;tbþ z0s;t;ia;
where xs,t is a vector of covariates common to all individuals during

period t of season s, zs,t,i is a vector of k individual-level covariates,

and b and a are corresponding vectors of regression coefficients.

The expected MVM and reporting probability can then be calcu-

lated by the k-dimensional integral, for example
�ds;t ¼

R
z logit

�1ðx0s;tbþ z0aÞfðzÞdz; where f() is the joint probability

density (or mass) function for the individual-level covariates.

In the absence of geographic and demographic closure (e.g.

due to movement, recruitment or non-MVM mortality), our

approach can be used to estimate the ‘open’ population size using

the study area during the period of interest. This is accomplished

by incorporating additional states based on the known fates and

locations of the marked individuals. For example, suppose demo-

graphic closure is violated within seasons due to ‘natural’ (non-

MVM) mortality. Although underutilized in wildlife studies,

instantaneous rates are commonly used in fisheries science to

model competing sources of mortality sensu the Baranov catch

equation (Baranov 1918; Hoenig et al. 1998). If we let ys,t,i = 3

indicate marked individual i was a natural mortality and assume

instantaneous mortality rates are constant within sampling peri-

ods, we can modify eqn 1 to accommodate both MVM and

natural mortality:

Lðy; ujD; r;P;UÞ ¼
YS
s¼1

YTs

t¼1

YM
i¼1

Categoricalðys;t;i;Ds;t;i; rs;t;i;Ps;t;iÞ
" #

�Binomial us;t;Us �
Xt�1

k¼1

us;k;
�Ds;tf1� expð� �Zs;tÞg�rs;t

�Zs;t

 !
eqn 2

where

Categorialðys;t;i;Ds;t;i; rs;t;i;Ps;t;iÞ

¼

qs;t;iexpð�Zs;t;iÞ þ 1� qs;t;i if ys;t;i ¼ 0

qs;t;iDs;t;if1� expð�Zs;t;iÞgrs;t;i
Zs;t;i

if ys;t;i ¼ 1

qs;t;iDs;t;if1� expð�Zs;t;iÞgð1� rs;t;iÞ
Zs;t;i

if ys;t;i ¼ 2

qs;t;iPs;t;if1� expð�Zs;t;iÞg
Zs;t;i

if ys;t;i ¼ 3;

8>>>>>>>>><
>>>>>>>>>:

Ds,t,i is the instantaneous MVM rate, Ps,t,i is the instantaneous

natural mortality rate, Zs,t,i = Ds,t,i + Ps,t,i, �Ds;t ¼ EiðDs;t;iÞ,
�Ps;t ¼ EiðPs;t;iÞ and �Zs;t ¼ EiðDs;t;i þ Ps;t;iÞ ¼ �Ds;t þ �Ps;t.

The population using the study area each season is then

derived as Ns = Ms + Us. The instantaneous mortality rates can

be modelled as functions of covariates using the log link function:

for example, logðDs;t;iÞ ¼ x0s;tbþ z0s;t;ia and �Ds;t ¼
R
z expðx0s;tbþ

z0aÞfðzÞdz.
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APPLICATION TO THE FLORIDA PANTHER

We used data collected within the breeding range of Florida pan-

thers, which is restricted to <12 600 km2 of available habitat in

south Florida (Kautz et al. 2006; Land et al. 2008; Onorato et al.

2011). The study area is bordered by the Caloosahatchee River to

the north, Florida Bay to the south and the urban areas of

Miami-Fort Lauderdale and Naples-Fort Myers to the east and

west, respectively (Fig. 2). While the breeding range of panthers

within the interior of south Florida has a lower density of roads

in comparison with the metropolitan areas along the coastline,

there are still numerous state, county and local roads that pan-

thers must cross with regularity. One major U.S. interstate high-

way (I75) transects the core of panther habitat by connecting

Fort Lauderdale and Naples. A 40-mile stretch of this interstate

that runs through prime panther habitat has been fitted with con-

tinuous high fencing and 36 underpasses specifically built or

retrofitted for wildlife (Lotz, Land & Johnson 1997; Onorato

et al. 2010). This has undoubtedly reduced the number of road

mortalities that would have been expected to occur on this high-

speed roadway. Despite these efforts, and the construction of

wildlife underpasses for panthers in other areas of south Florida,

MVM remains the major cause of mortality for panthers docu-

mented by agency personnel.

Based on known-fate data for marked panthers and public

reports of MVMs for both marked and unmarked panthers, our

goal is to estimate the adult and subadult (≥1 year old) male and

female population sizes of the endangered Florida panther across

its breeding range from 2000 to 2012. We relied on two sources

of data collected by Florida Fish and Wildlife Conservation

Commission (FWC) and National Park Service biologists. The

first data source came from panthers that were captured and ra-

diocollared with VHF transmitters (methods described elsewhere;

Land et al. 2008; FWC 2013). Location data for the marked (i.e.

radiocollared) panthers were collected during routine aerial moni-

toring flights three times per week (Land et al. 2008). Whenever

a radiocollar emitted a mortality signal, researchers would

quickly locate the carcass and determine the cause of death (e.g.

intraspecific aggression, disease, MVM, unknown). Thus, the

number of marked individuals alive in the study area was known

during the entire study period. Of the many causes of panther

mortality, MVM is arguably the easiest to identify based on char-

acteristic traumatic injuries and the location of the carcass. We

are therefore confident that mortalities identified as MVMs were

not actually the result of an alternate cause of death and that

unknown causes of death were not actually MVMs.

The second source of data was MVMs of both marked and

unmarked panthers reported by the public to agency personnel

from 2000 to 2012 (Fig. 3). Officials would dispatch to the site to

confirm the validity of any report as soon as possible, and 94

unmarked MVMs were reported and confirmed within the study

area. The vast majority of marked MVMs (13 individuals) were

reported to agency personnel by the public. There were three

exceptions where marked MVM carcasses were located through

aerial telemetry and removed from the roadside by agency per-

sonnel prior to public reporting. Given the location of two of

these carcasses when recovered, we believe these carcasses would

have eventually been reported to agency personnel. One carcass

of a marked MVM was located some distance from the roadway

and would not have been found without the assistance of the ra-

diocollar signal. Thus, for the purposes of this analysis, we trea-

ted 12 of the 13 marked MVM events as if they had been

reported by the public.

MVM events occur year-round in the breeding range of the

Florida panther. We divided our data into S = 13 seasons corre-

sponding to the 2000–2012 calendar years. We further subdi-

vided each season into 2-month sampling periods (hence Ts = 6

for s = 1,. . ..,13). Clearly, the population was not closed to

recruitment, movement or non-MVM mortality within each sea-

son; this necessitated estimation of the population size using the

breeding range each year as in eqn 2. However, because it does

not explicitly account for movement or recruitment processes,

we note that this ‘open’ model is an approximation (but see

Discussion).

Fig. 2. Delineation of the breeding range

of the Florida panther in southern Florida,

USA. A 40-mile stretch of U.S. Interstate

75 has been fitted with wildlife underpasses

and continuous high fending to reduce

wildlife road mortalities on this high-speed

roadway. Squares represent radiocollared

panther capture locations, circles with

crosses represent motor vehicle mortalities

(MVMs) of radiocollared panthers, and

dark circles represent MVMs for

unmarked panthers.
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Radiocollars could fail at any point during the study (e.g. due

to battery life), so we considered individuals with functional

transmitters as ‘marked’ and those without functional transmit-

ters as ‘unmarked’. An additional complication was that marked

individuals were introduced to the population from within-season

capture events (primarily during the winter months). We there-

fore modified eqn 2 to accommodate the addition of marked

individuals from within-season marking events as well as sex-

dependent parameters (see Appendix S1).

Out of M1 = 64 males and M2 = 76 females marked for some

period during the study, 12 were reported MVMs, 1 was an unre-

ported MVM, and 63 were ‘natural’ (i.e. non-MVM) mortalities.

A na€ıve estimate for the bimonthly MVM probability across

the entire study is therefore 13=ðP13
s¼1

P6
t¼1

P2
g¼1

PMg

i¼1 qg;s;t;iÞ
¼ 0 � 007 (SE = 0�002). Similar to other panther studies (Sollmann

et al. 2013), the sparseness of our data limited the complexity of

covariate models for the parameters (Pg,s,t,i, Dg,s,t,i, rg,s,t,i and Ug,s).

We investigated simple additive models with combinations of

sex, age (on log scale), age at initial capture (on log scale),

bimonthly sampling period and year effects on Pg,s,t,i and Dg,s,t,i.

To explain the MVM process, we developed an ‘index of risk’

covariate for Dg,s,t,i based on traffic volume and road density

(see Appendix S2). We also investigated models with no sex,

temporal or individual covariates (hereafter ‘constant’ models),

as well as an age by sex interaction model for Pg,s,t,i. Only a sin-

gle unreported marked individual MVM was observed; hence,

only constant models for rg,s,t,i were included (i.e. rg,s,t,i = r).

With relatively few unmarked individual MVMs reported each

year (Fig. 3), we suspected yearly effects on Ug,s could be

numerically unstable, imprecise and overly sensitive to relatively

small fluctuations in ug,s,t. We therefore investigated more parsi-

monious models on log(Ug,s), including constant, linear, qua-

dratic and cubic trend models. To examine whether the male

and female unmarked populations sizes were similar each year,

we also included models that constrained U1,s = U2,s.

We standardized continuously valued individual covariates and

assumed they are (approximately) normally distributed with mean

and variance calculated from the marked individuals: for exam-

ple, with a single time-invariant individual covariate zi,

logðDg;s;t;iÞ ¼ x0g;s;t;ibþ z�i a and �Dg;s;t ¼
R1
�1 expðx0g;s;t;ibþ z�aÞ

Nðz�Þdz� ¼ expðx0g;s;tbþ a2
2 Þ; where z�i ¼ zi�lz

rz
, lz ¼ 1=M

PM
i¼1 zi,

r2z ¼ 1=ðM� 1ÞPM
i¼1 ðzi � lzÞ2 and N() is the standard normal

density.

Following the recommendation of Doherty, White & Burnham

(2012), we ran all possible combinations of covariate models for

MVM rate (Dg,s,t,i), natural mortality rate (Pg,s,t,i), unmarked

adult male abundance (U1,s) and unmarked adult female abun-

dance (U2,s). We evaluated the support for each model using

Akaike’s information criterion (AICc) adjusted for small sample

sizes (Burnham & Anderson 2002). Population estimates and

unconditional variances for each season were model-averaged

based on AICc weights, with 95% logarithm-transformed confi-

dence intervals calculated based on a t-distribution withPS
s¼1

PTs

t¼1

P2
g¼1

PMg

i¼1 qg;s;t;i þ 2
PS

s¼1 Ts�1 ¼ 2135 degrees of free-

dom. All analyses were performed in R (R Core Team 2013)

using maximum likelihood methods, and variances for derived

parameters were approximated using the delta method. Data and

R code to perform our analysis are provided in Data S1.

Results

With 9% of the AICc weight, the best-supported model

included the risk covariate and bimonthly variability in

MVM rate (Dg,s,t,i), an age by sex interaction on natural

mortality rate (Pg,s,t,i), a (log scale) quadratic trend model

for the unmarked male population (U1,s) and a (log scale)

linear trend model for the unmarked female population

(U2,s). The estimated bimonthly reporting probability (rs,t)

from this model was 0�93 (SE = 0�07). This model esti-

mated lower MVM rates from July to October and

greater MVM rates in late spring (May to June) and early

winter (November to December), with Dg,s,t,i increasing

with our risk covariate (Fig. 4). Sex- and age-dependent

estimates for natural mortality rate (Pg,s,t,i) from this

model are reported in Appendix S3.

There was considerable model selection uncertainty

across the 1905 fitted models, but 98% of the AICc weight

was allocated to models including the risk covariate on

MVM rate and an age by sex interaction on natural mor-

tality rate (see Appendix S4). With a model-averaged logit

regression coefficient b = 0.75 (SE = 0�03) for the risk

covariate, we found overwhelming evidence that MVM

rate increases as a function of road length and AADT

volume within a panther’s home range. We found no evi-

Fig. 3. Motor vehicle mortality (MVM)

events for marked and unmarked Florida

panthers observed within the study area

during each bimonthly sampling period

from 2000 to 2012. Marked counts include

both reported and unreported MVMs, but

unmarked counts include only those

reported to wildlife officials by the public.
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dence for constant, sex, age or yearly effects on MVM

rate. There was some uncertainty about the best model

for MVM rate, with 62% of the AICc weight allocated to

models for Dg,s,t,i that included both risk and bimonthly

variability, but the primary source of model selection

uncertainty was attributable to the unmarked population

trend models. For males, quadratic (46% of AICc weight),

linear (34%) and cubic (18%) trend models received the

most support. For females, linear (38%), constant (29%),

quadratic (20%) and cubic (13%) trend models received

the most support. We found virtually no AICc support

for models with year-dependent effects on unmarked

abundance, with 0�1% and 0�0% of the AICc weight for

males and females, respectively.

Model-averaged abundance estimates suggest an

increasing then stabilizing adult male panther population

and a slightly increasing or stabilizing adult female pan-

ther population from 2000 to 2012 (Fig. 5). However,

with an average annual coefficient of variation of 29%

(SE = 0�01), these changes in population size from 2000

to 2012 were not statistically different based on 95% con-

fidence interval overlap. Although confidence intervals do

not suggest a difference between the annual population

estimates for males and females, we found little support

for the constrained models assuming equal unmarked

population sizes for males and females (16% of total

AICc model weight).

Discussion

We have capitalized on a tendency for the public to

report MVMs of species of concern to estimate the popu-

lation size of an endangered animal that has heretofore

been impossible due to logistical constraints commonly

encountered for rare, cryptic and broad-ranging species.

In addition to public reporting of MVMs, our methodol-

ogy relies on routine telemetry monitoring that allows the

location and survival of a marked subset of the popula-

tion to be closely followed, thereby allowing estimation of

MVM and reporting probability. By relying on the public

for sampling the unmarked segment of the population,

our methodology comes at little additional cost to ongo-

ing telemetry studies. By relying on the broad network of

roads throughout the breeding range of the Florida pan-

ther, we demonstrated how our approach facilitates sam-

pling of a much larger geographic area that would

otherwise be impractical or inaccessible (e.g. private land)

for researchers using more expensive and field-intensive

alternatives that rely on live capture or cameras for sam-

pling the unmarked segment of the population (e.g. Soll-

mann et al. 2013). For rare and elusive species that are

very difficult to sample using conventional methods, we

believe this framework holds much promise for producing

defensible estimates of abundance (and its uncertainty)

from limited and unconventional sources of data.

Our approach shares some similarities with mark–
resight methodology (e.g. White & Shenk 2001). Similar

to mark–resight, the most fundamental assumption of our

approach is that marked individuals are representative of

the entire population in terms of MVM probability,

MVM reporting probability and natural survival proba-

bility. This assumption is often violated in standard

mark–resight studies whenever there is individual varia-

tion in sighting probabilities and the marked population

is selected based on sightability (McClintock & Hoeting

2010). This was not the case for our study because the

marked population was established through capture

events (not MVM events). Random or systematic sam-

pling of individuals for marking is difficult to achieve in

practice, but efforts can be made at the design stage to

help achieve a suitably representative sample. In our case,

marked panthers were captured within the large parcels of

public lands that support panthers throughout the breed-

ing range. In terms of MVMs and natural survival rates,

we have no reason to suspect our marked animals differed

from unmarked individuals beyond the individual varia-

tion that can be explained by factors such as age, sex and

risk covariate. If panthers maintained very small home

ranges and were always marked near roads with high

Fig. 4. Minimum AICc model estimates of bimonthly motor vehi-

cle mortality (MVM) rate for Florida panthers from 2000 to 2012

as a function of the standardized index of risk covariate. The

standardized index of risk covariate had an observed range from

-0�8 (lowest risk) to 4�9 (highest risk) for marked panthers.

Fig. 5. Annual estimates for the subadult and adult (≥1 year old)

Florida panther population size using the breeding range from

2000 to 2012. Separate estimates are provided for male and

female populations. Total counts for the minimum number

assumed alive (MNA) based on physical evidence (McBride et al.

2008) are included for comparison.
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MVM risk (or within protected areas with low MVM

risk), then this could induce bias in our abundance esti-

mator. Although panthers were marked on public lands

that tend to have fewer roads than private lands, marked

panthers did not obey these boundaries (i.e. they were fre-

quently observed on private land).

It is conceivable that the presence of a telemetry collar

could affect the MVM reporting rate. A motorist who

strikes a collared panther could be more likely to report

the incident in the interest of science, but could also be

less likely to report out of (unfounded) fear of recrimina-

tion. Given the volume of motor vehicle traffic on the

roads of southern Florida and the prominence of pan-

thers with the public, we would only expect different

MVM reporting probabilities for marked panthers if

motorists were consistently attempting to hide marked

carcasses from view. We presently have no evidence in

support of such a scenario. Because we had no reason to

suspect otherwise, MVM reporting probability was

assumed to be constant over time. Although we consid-

ered models that included both bimonthly and annual

variation in MVM rate, the best-supported models

assumed no annual variation. This may be explained by

the sparseness of the data.

By relying on a representative sample of marked indi-

viduals selected independently of the sighting process,

mark–resight methods do not require that the area

searched be the entire study area (Bowden & Kufeld

1995). Individual variation in MVM probability (e.g. due

to road density) does not induce bias in abundance point

estimates, but if not accounted for, its uncertainty can be

underestimated. We therefore used a surrogate for sam-

pling intensity (i.e. road length and traffic volume) to help

explain individual variation in MVM probability.

Although annual road length and traffic volume data

were unavailable for our study, it could be important to

account for temporal trends in these covariates for long-

term population monitoring. For example, if human

development and population growth leads to increases in

road density and traffic volume in some areas during the

course of a study, so too may the MVM risk for individu-

als with home ranges that include these areas.

Given the sparseness of the panther MVM data, we

found overwhelming support for (log scale) trend models

on the unmarked population sizes. We found the most

support for increasing linear or quadratic trend models

for the unmarked male population and increasing linear

trend or stable models for the unmarked female popula-

tion. Although these trend models proved more parsimo-

nious and yielded more stable estimates than the most

general year-dependent models, the biological interpreta-

tion of these models requires additional care. Trend mod-

els on the unmarked population size can only be

interpreted as the overall population trend if the number

of marked individuals remains relatively constant or is a

small proportion of the total population. The number of

marked panthers in our study was relatively constant due

to similar winter capture efforts each year, with the num-

ber of marked males ranging from 10 to 17 per year

(median = 13, SD = 2�3) and the number of marked

females ranging from 10 to 25 per year (median = 20,

SD = 4�9).
We made several modifications to the ‘closed’ popula-

tion model (eqn 1) to accommodate a lack of demo-

graphic and geographic closure within each year of the

panther study. However, our ‘open’ model for the panther

population using the study area each year is still approxi-

mate because it does not explicitly account for the within-

year movement or recruitment processes. For example, an

unmarked individual recruited to the adult population in

November is (incorrectly) treated as if it had been present

for the entire year by our approximate likelihood. A sin-

gle marked male permanently emigrated north of the

breeding range, but we did not observe any temporary

emigration on or off the breeding range by marked pan-

thers. Given that panthers persist as a single, isolated

breeding population in south Florida, we had little to no

concern about potential biases induced by immigrants

moving into the study area from another population.

However, we investigated the potential biases induced by

within-season in situ reproduction through simulation

experiments. We found our approximate likelihood per-

formed well for a realistically simulated population under

similar sampling conditions to the panther study, with

negligible bias (-0.1%) and near-nominal 95% confidence

interval coverage (92�1%) of open population abundance

(see Appendix S5).

Because the panther population was not closed, the

population using the study area each year is clearly larger

than the actual population within the study area at any

given point in time. Our open population estimates are

therefore inappropriate for inferences about panther den-

sity. Lack of geographic closure can be readily handled

under our framework to produce estimates suitable for

density (McClintock & White 2012), but natural mortality

and in situ reproduction pose additional challenges for

estimating population density. It may be possible to uti-

lize auxiliary demographic information to estimate pan-

ther density using post hoc analysis or integrated

population modelling (e.g. Conn et al. 2008); this is the

focus of additional research.

In eqns 1 and 2, we effectively assume that carcasses

persist long enough to be reported with nonzero probabil-

ity during the sampling period in which the MVM event

occurred. All reported MVMs for marked panthers

occurred within days of the MVM event, and given the

size of the carcasses, the persistence rate of panthers on

roadways is likely to be very high. However, this may not

be the case for smaller species or other carcass recovery

programmes. Unreportable carcasses arising from removal

(e.g. due to scavenging) or degradation (e.g. due to

decomposition) result in r being redefined as a combined

‘persistence and reporting’ probability in eqns 1 and 2,

but this is not a problem for abundance estimation
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because all unmarked encounters consist of carcasses that

both persisted and were reported. For example, the esti-

mator does not necessarily need to distinguish unreported

MVMs that were intact but obscured behind roadside

vegetation from those that were dragged off the roadway

by scavengers (but it is certainly possible to do so). How-

ever, when reporting rates are low and the duration of the

sampling period is short relative to carcass persistence,

then our modelling approach may not be appropriate

because we assumed that mortality events occurred during

the sampling period in which they were observed.

MANAGEMENT IMPL ICATIONS FOR THE FLORIDA

PANTHER

Our Florida panther abundance estimates suggested the

adult population has increased across its core reproductive

range over the past decade, with possible stabilization in

recent years. Despite low MVM probabilities, we achieved

an average coefficient of variation of 29%. This precision

is reasonable and similar to other panther studies (Soll-

mann et al. 2013). However, our model-averaged confi-

dence intervals were still too large to conclude there were

significant increases in population size from 2000 to 2012.

Furthermore, upper confidence interval bounds in later

years (e.g. 509 panthers in 2012) exceeded population esti-

mates we believe could be supported within the breeding

range of the Florida panther. These higher upper bounds

are likely an artefact of a low MVM probability, which

was about 0�04 (SE = 0�01) annually during our study.

Although we chose to let these data ‘speak for themselves’,

additional model structure could incorporate information

about the carrying capacity of the breeding range.

Perhaps most informative are the estimated lower

bounds for the annual population estimates for the pan-

ther breeding range. As expected, we consistently found

the lower bounds exceeded MNA counts based on physi-

cal evidence (see Fig. 5), but our annual population esti-

mate generally follows the same trend as the MNA

method through the course of the study period. Progress

associated with recovery of critically endangered animals

should preferably rely on conservative measures of popu-

lation estimates or lower bounds, especially when data are

sparse due to the challenges of monitoring rare species

(Miller & Waits 2003; Mills 2007). Our estimated lower

bounds indicate this single population may never have

exceeded 150 individuals between 2000 and 2012. As part

of the recovery criteria for the Florida panther, three dis-

tinct populations of 240 individuals must be established

before delisting. Two distinct populations of 240 individu-

als must be maintained for two panther generations

(12 years) to downlist the subspecies to threatened.

Although our results do not support a change in listing

status for the Florida panther based on these established

recovery criteria, they do suggest that management initia-

tives (e.g. genetic restoration, wildlife underpasses and

corridors) to this point appear to be working. Our

rmethodology can be continually applied on an annual

basis at little additional cost and could help alert manag-

ers if the population appears to be declining, stabilizing

or continuing to increase.

A novel methodology recently introduced by Chandler

& Royle (2013), which we refer to as spatial mark–resight,
was recently investigated for estimating Florida panther

density using trail cameras (Sollmann et al. 2013).

Although very useful and promising, the estimates of Soll-

mann et al. (2013) were limited to 2 years on a relatively

small study area (241 km2) on public land. Even if access

to private lands was unrestricted, it would likely be pro-

hibitively expensive and field intensive to continuously

monitor panther density over its entire range using spatial

mark–resight. In addition to routine telemetry monitoring,

spatial mark–resight incurs substantial camera, field vehi-

cle, fuel, battery and labour costs. Our approach utilizes

data that are already collected as part of routine monitor-

ing, and its costs are therefore negligible in comparison.

However, we ultimately believe the most precise and cost-

effective approach for continued monitoring across the

entire breeding range of the Florida panther will combine

all sources of available information (e.g. spatial mark–
resight and mark–recapture, MVM, telemetry, recruitment

data) in a spatially explicit integrated population model

(e.g. Chandler & Clark 2014).

Our abundance model was developed for historical data

that were originally collected for purposes other than pop-

ulation size estimation. Despite a sparse data set, we were

able to obtain useful information about abundance of

panthers while accounting for imperfect detection. This is

a substantial improvement compared to indices of abun-

dance derived from uncorrected minimum counts (e.g.

MNA). Should researchers wish to pursue our methodol-

ogy for other species as a less expensive means for long-

term population monitoring, we suggest a focus on

improving precision by devoting additional resources to

maintaining a relatively large pool of marked (i.e. radio-

collared) individuals in their focal population. Sample

sizes for unmarked individuals could also potentially be

increased through awareness campaigns encouraging the

public to report encounters with wildlife. Of course, there

are cost-benefit trade-offs that practitioners must consider

when attempting to increase sample sizes under this

framework.

Although initially developed for the Florida panther, our

methodology is not limited to this particular species or

aspect of human–wildlife ecology. Because it relies on citi-

zen-based science, our technique could be adapted for any

population that is encountered by a reporting public and

contains a subset of closely monitored marked individuals.

Harvested populations are an obvious example, although

these studies will typically have sufficient recovery data to

support more complicated modelling approaches than pro-

posed here (e.g. Conn et al. 2008). Other examples include

reports of avian wind farm collisions, beached whales or

marine mammal boat strikes, which conceivably could be

Published 2015. This article is a U.S. Government work and is in the public domain in the USA, Journal of Applied Ecology, 52, 893–901

900 B. T. McClintock, D. P. Onorato & J. Martin



utilized under this framework for long-term population

monitoring over broad geographic areas.
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